Current Research

I am a third-year PhD student at Sorbonne Université in the LIP6 laboratory within team MLIA, under the direction of Sylvain Lamprier and Patrick Gallinari.

I am working on machine learning for spatio-temporal data. In particular, my work is focused on how to leverage differential equations and their links with neural networks in order to create performant prediction models for complex data, such as videos.

Inspired by such connections, I designed with colleagues a novel temporal model based on residual connections instead of recurrent neural networks, and that lead to state-of-the-art results for stochastic video prediction.

We also leveraged a resolution technique for partial differential equations, the functional separation of variables, to propose a novel interpretation of spatiotemporal disentanglement, leading to a simple but performant disentangled predictive model.

Furthermore, we analyzed differential equations describing the temporal evolution of neural networks during training. In particular, thanks to the study of these differential equations, and leveraging the neural tangent kernel theory, we proposed a novel theoretical framework for the understanding of generative adversarial networks, which are performant generative model for both static and sequential data.

Recent Research Areas

During the second half of my studies at Ecole Normale Supérieure de Lyon, I became interested in machine leaning and artificial intelligence, and have done three related long research internships since then.

I worked more particularly on:

  • fairness and accountability of automated decision-making processes;
  • robustness of classifiers to adversarial and random examples;
  • convex optimization;
  • unsupervised representation learning for time series.

Previous Research Experience

Here is a list of my research internships (in reverse chronological order), that were done within the scope of my studies at Ecole Normale Supérieure de Lyon:

You can find more information about my research experience in my CV.